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Abstract

With the invention of integral imaging and parallax barriers in the begin-
ning of the 20th century, glasses-free 3D displays have become feasible.
Only today —more than a century later— glasses-free 3D displays are fi-
nally emerging in the consumer market. The technologies being employed
in current-generation devices, however, are fundamentally the same as
what was invented 100 years ago. With rapid advances in optical fab-
rication, digital processing power, and computational models for human
perception, a new generation of display technology is emerging: compu-
tational displays exploring the co-design of optical elements and compu-
tational processing while taking particular characteristics of the human vi-
sual system into account. This technology does not only encompass 3D
displays, but also next-generation projection systems, high dynamic range
displays, perceptually-driven devices, and computational probes.

This course serves as an introduction to the emerging field of compu-
tational displays. The pedagogical goal of this course is to provide the au-
dience with the tools necessary to expand their research endeavors by pro-
viding step-by-step instructions on all aspects of computational displays:
display optics, mathematical analysis, efficient computational processing,
computational perception, and, most importantly, the effective combina-
tion of all these aspects. Specifically, we will discuss a wide variety of
different applications and hardware setups of computational displays, in-
cluding high dynamic range displays, advanced projection systems as well
as glasses-free 3D display. The latter example, computational light field
displays, will be discussed in detail. In the course presentation, supple-
mentary notes, and an accompanying website, we will provide source code
that drives various display incarnations at real-time framerates, detailed
instructions on how to fabricate novel displays from off-the-shelf compo-
nents, and intuitive mathematical analyses that will make it easy for re-
searchers with various backgrounds to get started in the emerging field of
computational displays. We believe that computational display technology
is one of the “hottest” topics in the graphics community today; with this
course we will make it accessible for a diverse audience. While the popular,
introductory-level courses “Build Your Own 3D Displays” and “Build Your
Own Glasses-free 3D Display”, previously taught at SIGGRAPH and SIG-
GRAPH ASIA, discussed conventional 3D displays invented in the past,
this course introduces what we believe to be the future of display tech-
nology. We will only briefly review conventional technology and focus
on practical and intuitive demonstrations of how an interdisciplinary ap-
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proach to display design encompassing optics, perception, computation,
and mathematical analysis can overcome the limitations for a variety of
applications.

We will discuss all aspects of computational displays in detail. Specif-
ically, we begin by introducing the concept and discussing a variety of
example displays that exploit the joint-design of optical components and
computational processing for applications such as high dynamic range im-
age and wide color gamut display, extended depth of field projection, and
high-dimensional information display for computer vision applications.
We will then proceed to discussing state-of-the-art computational light field
displays in detail. In particular, we will focus on how high-speed displays,
multiple stacked LCDs, and directional backlighting combined with ad-
vanced mathematical analysis and efficient computational processing pro-
vide the foundations of 3D displays of the future. Finally, we will review
psycho-physiological aspects that are of importance for display design and
demonstrate how perceptually-driven computational displays can enhance
the capability of current technology.

Prerequisites

For this intermediate-level course, some familiarity with Matlab, C/C++,
OpenGL, as well as a general understanding of linear algebra and Fourier
analysis is assumed, although the course also functions as a brief, applica-
tion-driven introduction to each of these tools.
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Course Outline

3 minutes: Introduction and Overview
Gordon Wetzstein

This part will introduce the speakers, present a motivation of the
course, and outline the individual parts.

22 minutes: Computational Displays as a Next-generation Technology
Gordon Wetzstein

This part will introduce the emerging field of computational displays.
We will discuss the fundamental building blocks of computational
displays: optical components, computational processing as well as
the human visual system. This part will also serve as an overview
of computational displays, such as adaptive coded aperture projec-
tion, high dynamic range displays, and emerging projection systems.
In addition to displays intended for the human visual system, we
also plan to provide an overview of computational probes: high-
dimensional displays targeted toward computer vision applications
rather than the human visual system.

35 minutes: Computational Light Field Displays - Hardware Architec-
tures, Fabrication, Content Generation and Optimization
Douglas Lanman and Matthew Hirsch

The combination of numerical optimization, display fabrication, and
efficient computational processing provides the foundation of fu-
ture glasses-free 3D display design. This part will present the lat-
est light field display designs exploiting high-speed LCDs as well as
stacked layers of light-attenuating and polarization-rotating LCDs.
We will present detailed instructions on how to build arbitrary com-
binations of high-speed see-through LCD panels and refractive op-
tical elements from off-the-shelf parts. In addition, we will pro-
vide source code and instructions for driving these with efficient
GPU-based implementations of the most important algorithms: to-
mographic light field synthesis, non-negative matrix factorizations
as well as non-negative tensor factorizations. Furthermore, this part
will discuss how important display characteristics, such as depth of
field, field of view, and contrast, are theoretically analyzed. This
analysis along with hardware and software-related implementation
details will be presented as step-by-step instructions so as to provide

5



other researchers with intuitive tools that facilitate them to get started
in this exciting new field and build their own computational light
field displays.

20 minutes: Perceptually-driven Computational Displays
Diego Gutierrez

This part will review aspects of the human visual system that are of
particular importance for designing displays. In particular, we will
discuss sensitivity to contrast, spatial frequencies, stereo disparities
and other depth cues as well as temporally-multiplexed signals. The
goal of this part is to emphasize how the limitations of the human
visual system can be exploited to enhance the perceived capabilities
of computational displays.

10 minutes: Summary and Q & A
All

This part will summarize how computational displays are chang-
ing current display architectures by exploiting the co-design of dis-
play optics and computational processing targeted toward human
observers. We will outline future directions of this emerging field
and allow for sufficient time to answer questions and stimulate dis-
cussions.



Computational Displays as Next-
generation Technology

Gordon Wetzstein
MIT Media Lab

This part of the course is meant to give an overview of computational displays. Rather that
focusing on a few different approaches, the next 20 minutes will be more of a fast-forward of
much of the research in the area that has been conducted within the last decade or so.




HDR D}sj ay Systems

TRILUIMIINOS

EEE Dynamic LED

Backlight Backhight

|
LED panel l LED panel

_

Display
screen

S

/

Display screen Display screen
with local with CCFL
dimming backlighting
backlighting

Local dimming, Sony

CINAADADLIONAD
\

Micro-dimming, Samsung

Let’s start out with a technology that most people have at home: a television. Within the last
few years, most TVs that you buy in the store today have local dimming or micro dimming
integrated. That is an approach to creating high contrast imagines by combining a low-

resolution LED-based backlight with a high-resolution LCD.
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LED and LCD images. [Seetzen et al. 2004, Dolby 2008] Conventional Displays (2-3 orders)

The underlying technology was invented in 2004 and presented here at Siggraph for the first
time. HDR displays tackle the problem of conventional LCDs having a limited contrast by
replacing old-school CFL backlights with an array of programmable LEDs. This provides
programmable rear-illumination that can be locally dimmed or even turned off, while
illuminating the LCD with full brightness in other image parts.

The necessary pre-computation, usually carried out on the device in real-time, decomposes a
target HDR image into a low-resolution but high contrast pattern displayed on the LED array
and a corresponding high-resolution LCD image that adds sharp image details and colors on
top of the LEDs.

The concept allowing for a significant increase in contrast for these displays is dual
modulation. By using two layers of displays that act in a multiplicative fashion, in this case an
LCD and a LED array, the overall contrast of the display is increased.
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Similar ideas have also been applied to increasing the contrast of static prints or other
hardcopies. For this purpose, a projector can be used to illuminate the print, an e-reader, x-ray
transparencies, or any other type of low-contrast display. As long as the projector is registered
with the secondary display, it can just illuminate it with the exact image shown on the hardcopy
to increase its dynamic range as seen in these examples on the top.

Oliver Bimber also explored the concept of dual modulation for microscopy. The optical design
is more involved than for simple printouts, but the idea is the same: a camera observes a
specimen and the optics are built so that a programmable light source illuminates it so as to
optically enhance the observed contrast. With live camera feedback, the projected images can
also be adjusted to allow for dynamic content such as live specimen.
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Dual modulation has the potential to increase the dynamic range of a variety of other displays
as well. As seen in this schematic, the dynamic range of projectors can be extended through
dual modulation. What we see is the design of an HDR projector that basically consists of a
light source on the left, a conventional reflective or transmissive spatial light modulator for
each color channel in the center, and an additional modulator on the right. While the latter only
allows for the modulation of the luminance channel, the dynamic range for displayed
luminance values is increased as the blacklevel is decreased.

Please note that the human visual system is most sensitive to contrast for luminance
perception and not very sensitive to chrominance contrast. In effect, the optical projector

design enhances the capabilities of the device in a perceptually optimal manner. Exploiting the
limitations of human perception for display optics design and the corresponding computational
processing is the spirit of computational displays.
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A somewhat more sophisticated approach to high dynamic range projection was recently
presented at Siggraph Asia. While the previous HDR projector blocks a lot of the light inside
the device to achieve a lower backlevel, this projector recycles excessive background light in
dark image areas. Using an analog micro-mirror array in the optical path, excessive light is
steered to other image areas and basically increases the maximum image brightness there.

Light re-allocation or recycling in projectors is an idea that not only increases the contrast of
the devices but also reduces the heat and cooling power consumption because the produced
light is steered out of the physical enclosure rather than dumping it inside.

This particular project is a great example of how a similar functionality, in this case high
dynamic range imaging, can require very different optical designs and corresponding
processing depending on whether it's a projector or a TV. In one case dual modulation may be
a great idea because one can mostly control where light is being emitted whereas in a
projector one usually does not have that luxury, so reallocation may be a much better option.
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In a much broader sense, projectors have been used for unconventional applications for more
than a decade. “The Office of the Future” is probably one of the seminal papers envisioning
seamless integration of multi-projector systems into our daily workspaces. Even now, more
than a decade later, fully-immersive teleconferencing systems and spatial interfaces allowing
us to augment the world with virtual information are still an active area of research. Many of
the practical problems associated with multi-projector systems, such as photometric and
geometric calibration, however, are solved. Textbooks, such as that by Aditi Majumder cover

the topic exhaustively.
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[Bruno et al. 2011]

Another well-known use of computational imaging is structured illumination. The joint design of
projected optical codes and computational reconstruction of the underlying data has been a
standard technique in computer visions for years. Usually, these approaches encode a one-to-
one mapping between projector and camera pixels which allows for diffuse geometry

acquisition when the devices are calibrated.
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Spatial augmented reality, such as shader lamps and radiometric compensation, allow
projectors to manipulate the appearance of objects turning brick walls into planar, white
canvases or plain white objects into colorful miniatures of the real world. These approaches
require the geometry and reflectance of the surfaces to be known and registered to the
projectors; the computational pre-distortion of displayed images can then easily be performed
using standard projective texture mapping or other forms of image distortion.
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While most projector camera systems make strong assumptions on the imaged scene, such
as Lambertian-ness, inverse light transport with applications to radiometric compensation and
synthetic relighting has been explored as well. The involved illumination patterns and their
decoding are more involved than for diffuse scenes, but the general idea of compensating for
optical effects using computational pre-processing is the same as simple structured
illumination.
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Light transport does not always have to be inverted, it can also be transposed. Pradeep Sen
and colleagues have shown that the transpose of the light transport matrix can be useful for
generating dual images showing the scene from the point of view of a projector illuminated by
a light source at the point of view of a camera. This allows for novel view generation, even
unveiling parts of the scene that were only visible by the projector and never by the camera.
Relighting a complex scene with novel illumination patters, such as seen in these images, is
another application.

1
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Arrays of projectors, here simulated with a single device illuminating an array of mirrors, in
combination with random illumination patterns can create a large synthetic aperture projector.
As is the case for cameras, large apertures for projectors create a very shallow depth of field.
In this particular application, individual depth slices of the scene can selectively be illuminated
such as seen for the David statue on the right.
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While a shallow depth of field is sometimes desirable, when projecting on complex screens an
increase in depth of field is actually required to guarantee focused image projection on all
parts of the screen. Multiple overlapping projectors, each adjusted at a different focal length
can be used to extend the depth of field of a single, virtual projector. Using a camera in the
loop, the surface geometry can be scanned and a composite image from all devices computed
that allows for the minimal amount of overall defocus in the system.
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al Projectors — Coded Apertures 2

An alternative, single device approach to extended depth of field projection has been
proposed by us a few years ago. We replace the circular aperture of a projector with
programmabile liquid crystal array to build a coded aperture projector. The purpose of this
device is an extended depth of field. We achieve this by jointly optimizing the display image
and aperture pattern taking the contrast sensitivity of the human visual system into account.
On the right you can see an image that has an increasing frequency on the x-axis and an
increasing contrast on the y-axis. The underlying pattern should be a linear gradient in both
axes, but looking at it we actually see the a curve that visualizes our frequency-dependent
contrast detection threshold.

14



e . | IGGRAPH20124/
fational Projectors — Coded Aper?ures 4

10( XU,

v
A

[Grosse et al. 2010]

focussed defocussed deconvolved
(untreated) (adapted)

N

Here are some results, the focused image on the left, an optically defocused projection in the
center right, and the compensated image in the center. Corresponding close-ups are shown
on the right. The aperture codes seen in the insets are computed so as to preserve the image
frequencies that are most important for a human observer. Given this pattern, the projected
image is computed by deconvolving it with that pattern as a blur kernel.

15



P
SIGGRAPH2012(_4

ARToolKit

Let us also look at a completely different family of displays: head or eyeworn devices. With
google goggles and project glass, these ideas finally start to emerge in the consumer market.
The field of augmented reality, however, has been exploring the potential of head-mounted
displays both optical see-through and video-based for decades.

16



CINAADADLIONAD
\
Y

[Wetzstein et al. 2010]

I would just like to highlight one display that has recently been proposed, which is not really an
AR approach. We envision sunglasses, car windshields, and other commonly used see-
through screens to have spatial light modulators integrated. Sunglasses of the future will be
able to dim the environment light where it is actually bright, while preserving the visibility of
shadows and other low-light parts of the scene. The underlying physical mechanisms require
all-optical image processing by selectively blocking light that reaches the observer’s eyes.
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This can be done by integrating a small camera into the sunglasses, processing the recorded
video stream, and computing a modulation patterns for the see-through screen. We

demonstrate applications to contrast manipulation, which can be used as optical tonemapping.

Furthermore, we can optically highlight specific objects of interest by dimming the other parts
of the scene. The human visual system pre-attentively processed this kind of information —
high level visual processing is not required. We also show that colors of the observed scene
can be modulated, allowing for color de-metamerization or even recoloring objects to enhance
the vision of color-deficient viewers.
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ting-Sensitive Displays

[Nayar et al. 2004]

Lighting sensitive displays have also been an active area of investigation. Shree Nayar
proposed such a display in 2004. The presented virtual content reacts to the environment
illumination and, in this example, can be lit by a real light source. In a way, the displays acts as
a window into a virtual world that is a seamless extension of the physical world with light
interacting between the two.

The underlying technology is actually rather simple: a wide field of view camera is integrated in
the display frame and captures an environment map. This allows for real-time relighting of the
content.
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Recently, Microsoft Research and Samsung have introduced PixelSense or sensors in pixels
as part of Microsoft Surface 2.0. Thus is basically a big multi-touch LCD screen. What's
special about is is that it has, just as regular LCDs, three subpixels for the individual color
channels but in addition this screen has a fourth subpixel that acts as a sensor. Combined with
infrared background illumination, an unprecedented resolution of the touch interaction can be
captured. Please note that the captured images are only in focus when the fingers actually
touch the surface.
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[Hirsch et al. 2009]

Years before pixel sense was announced by Microsoft, Matthew Hirsch and Douglas Lanman
published a very related research project - the Bidi screen. Here, a screen is envision that also
acts as a camera but captures a 4D light field rather than a 2D image as the Surface 2.0 does.
This capability is achieved by placing the light sensitive elements at a slight offset from the
actual LCD pixels. The LCD switches, at a very high refresh rate, between standard image
display and a mask-pattern that allows the underlying sensor cells to capture the light field.

These images show the prototype Bidi screen that implemented the concept using a camera
and a diffuser behind the screen, hence it’s a litter bigger.
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[Hirsch et al. 2011]

One application for such a depth-sensing screen is hovering gestural interaction - multi-touch
in 3D.
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[Hirsch et al. 2011]

Another application is light-sensitive image display, just like Shree Nayar’s original idea. In this
implementation, however, the screen acts as the light sensing device and captures the 4D

incident light field which allows for much more accurate relighting as compared to a
conventional 2D camera.
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Another light sensitive display is the 6D display. This is a passive display which shows objects
that are rear-illuminated by the real world. It uses a lenslet array that is flipped around and
converts the incident 4D illumination light field into an interlaced 2D pattern on a transparency;
the latter encodes images showing a scene under exactly these lighting conditions.
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[Hirsch et al. 2012]

Combining the ideas of capturing and displaying 4D light fields with a single display surface
results in the 8D display, which was recently built by Matthew Hirsch. Here, the viewer looks
sees 3D objects without having to wear glasses. By capturing the incident light field, these
objects can also be lit by physical illumination. Shadows are cast from the real world onto
virtual objects in the most natural manner.

25



[W. Beaty 1995] [Regg et al. 2010]

While we will discuss glasses-free 3D displays in more detail in the second part of our course,
| would just like to highlight an unconventional example of fabricating 3D displays. Scratch
holography was explored in online tutorials by William Beaty in the 90s and what he basically
did was using a compass to scratch many circles into the surface of a surface. When
illuminated by a distant light source, such as the sun, the surface then creates specular
highlights that create a most convincing impression of a 3D object floating around the screen.
You can move around the screen — it supports motion parallax and binocular disparity.

A computational approach to scratch holography was proposed by Regg et al. in 2010. The
authors decomposed a given 3D object into “scratches” and then automatically fabricated the
surface with an engraving machine. While the results have a relatively low-resolution, this is a
perfect example of a computational display that combines fabrication and computational pre-
processing.
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[Weyrich et al. 09]

[Hullin et al. 11]

The idea of computational materials has been rather popular in the last few years. Weyrich
and colleagues proposed a computational approach to fabricating micro-geometry so as to
achieve a predefined reflectance behavior of the material. Custom reflections can, for
instance, be teapots as seen in the top row here.

A dynamic BRDF display was proposed by Matthias Hullin and presented at Siggraph
emerging technologies last year in Vancouver. In case you did not have a chance to see it
there, it's basically a small water tank with programmable actuators on the side. These are
moved in a way to create wave-patterns that overlay and create a desired BRDF. In the bottom
center, you see a checkerboard reflected in the water tank without any waves, whereas the
bottom shows the same scene with wave patterns that create a custom reflectance of the
surface.
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[Hasan et al. 2010]

Spatially-varying reflectance can also be “printed”, as proposed by Wojciech Matusik in 2009.
Here, a 2D multi-material desktop printer mixes different materials to achieve a custom
reflectance of the printed patterns. Printed reflectance properties range from purely reflective
to diffuse and anything in between.

But not only 2D materials can be mixed to create a spatially varying reflectance, also 3D
printers can facilitate new display capabilities by mixing different materials. Objet’'s Connex
500, a rather expensive 3D printer, actually has the capability mix two different print materials
in addition to the support material. By combining those in clever ways, an approximation to
arbitrary, spatially-varying subsurface scattering can be created on printed 3D objects, such as
the bunnies and printed marble slabs on the right.
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Neri Oxman

On this note, | would like to point you to Neri Oxman'’s work at the MIT Media Lab. She has
been exploring computational materials for design, art, and architecture for a number of years.
So please see the website of her mediated matter group for more information, if you are
interested in this topic: http://www.media.mit.edu/research/groups/mediated-matter
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[Baran et al. 12]

Not only can materials with custom reflection properties be fabricated, similar concepts also
apply to transmissive displays. The folks at Disney Research in Zurich have been actively
working on that topic and proposed an approach to milling the surface of a refractive piece of
plexiglas so that it creates caustics that form an image, such as Lena seen in the top.

Rather than using a refractive surface, multiple stacked layers of light attenuators can also be
used. Spaced by clear acrylic sheets, multiple inkjet-printed transparences contain pre-
computed patterns that create different shadow images depending on the incident angle of a
distant light source.
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itional Probes

[Wetzstein g2t

Displays can also be used as probes that encode visual information for computer vision
applications rather than for a human observer. Last year, we introduced light field probes for
visualizing and reconstructing transparent refractive objects. For this purpose, a light field
display consisting of a lenslet array with a high-frequency pattern is placed behind the
transparent object of interest. When observed without the object from the central position, the
probe just looks white. As the object refracts light, the incident angle of observed light rays on
the background probe change and different ray angles on the background are color coded.
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Here’s an example. The glass unicorn is almost transparent when observed in front of a
uniform light source. On the right, we see the probe without an object. But when placing the
object in front of the probe, the angles and magnitudes of refracted light rays are optically
coded in color and saturation.
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Computationa

[Wetzstein et al. 2011]

SIGGRAPH2012\/”

Camera Image Reconstructed Surface

Extracted Normals Synthetic Rendering

This information can directly be used to reconstruct the surface of refractive objects. As only a
single image is required, even dynamic surfaces such as wavy water can be acquired and

reconstructed.
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dmputational

[Pamplona

Computational displays are nor only fun but also have important applications in global health.
A final family of computational displays for ophthalmological applications has been proposed
over the last few years.

In this example, we see how a smart phone display can be converted into a 4D light field
display using an inexpensive clip on. By asking the user to interactively align a few patterns,
this device has the capability of measuring the refractive errors of the observer.
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Computational Ophthalmology — Refractive Errors
Inverse of Shack-Hartmann, user interactive!

Spot Diagram  CellPhone
onLCD LCD

Displace 25
points but
3 parameters

[Pamplona 2010]

The display acts as the inverse of a Shack-Hartmann sensor that is often used in astronomical
imaging to capture an incident wavefront. In this application, the user basically changes the
patterns to align in some form in the perceived image, but the displayed pattern itself is
predistorted so as to compensate for the refractive errors of the eye.
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Computation:

[Pamplona 2011]

Pinhole

Cell Phone
Display

A very similarly-looking smart-phone clip-on has presented last year at Siggraph with a
different purpose: measuring cataracts. In this case, the display basically acts as a radar
scanning a pattern over he viewers pupil. The observer simply clicks a few buttons and gets
back a detailed map of cataracts on his lens.
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Strong Presbyopia
(farsightedness)

Tailored
Glasses-Free .
Display \
b

[Pamplona 2012] (a) Input Image (b) Regular Display  (c) Tailored Display

Finally, a new tailored display is presented at this year’s Siggraph by the same authors. This is
a special light field display that has the capability to show a sharp image for an observer that
doesn’t need his glasses. It displays the light field corresponding to a 2D image that is moved
within the focus range of the observer.
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Tay et al. MIT Media Lab Spatial Imaging Group
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light box
Layered 3D and Polarization Fields

= Parallax barriers use heuristic design: front mask with slits/pinholes, rear mask with interlaced views
= High-Rank 3D (HR3D) considers dual-layer design with arbitrary opacity and temporal multiplexing
= |ayered 3D and Polarization Fields considers multi-layer design without temporal multiplexing
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=  Automultiscopic Displays
" Multi-Layer Displays
> Layered 3D
— Polarization Fields
= Dual-Layer Displays
— High-Rank 3D (HR3D)
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Layered 3D Display

Transparency stack with acrylic spacers Prototype in front of LCD (backlight source)
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= Automultiscopic Displays
= Multi-Layer Displays
— Layered 3D
» Polarization Fields
= Dual-Layer Displays
— High-Rank 3D (HR3D)
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= Multi-Layer Displays
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— Polarization Fields
* Dual-Layer Displays
» High-Rank 3D (HR3D)
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Parallax Barrier




Matthew Hirsch and Lanman. Build Your Own 3D Display-



Time-Multiplexed Parallax Barrier High-Rank 3D (HR3D)
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HR3D: Front LCD Image

High-Rank 3D (HR3D) Layered 3D Polarization Fields
www.hr3d.info www.layered3d.info tinyurl.com/polarization-fields

BiDi Screen Tensor Displays
www.bidiscreen.com tinyurl.com/tensordisplays



Perceptually-driven Computational
Displays

Diego Gutierrez
Universidad de Zaragoza
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= For the latest version of the slides, please go to:
= http://giga.cps.unizar.es/~diegog/pub.html
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http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/
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We judge the color of an object by
comparing it to surrounding colors!

http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/
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= Dynamic range

= Depth

= Spatial frequencies
= Temporal frequencies

= Can we exploit the limitations of the HVS to enhance their
perceived capabilities?
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Real-world

Display

Goal: map colors to a restricted color space

Multidimensional image retargeting, SIGGRAPH Asia 2011 (slide by Rafal Mantiuk)
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which are minimized

Display adaptive tone mapping, SIGGRAPH 2008 [Mantiuk et al.]
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Multidimensional image retargeting, SIGGRAPH Asia 2011 (slide by Piotr Didyk)
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Multidimensional image retargeting, SIGGRAPH Asia 2011 (slide by Piotr Didyk)
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New Disparity M

Input Disparity

© 2010 Disney Enterprises

“Nonlinear Disparity Mapping for Stereoscopic 3D” by Lang et al. 2010
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Visual Importance
based on saliency

New Disparity M

Input Disparity

© 2010 Disney Enterprises

“Nonlinear Disparity Mapping for Stereoscopic 3D” by Lang et al. 2010



QIR ADHOND

Light Field

“Multi-Perspective Stereoscopy from Light Fields” by Kim et al. 2011
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“Multi-Perspective Stereoscopy from Light Fields” by Kim et al. 2011
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“A perceptual model for disparity” by Didyk et al. 2011
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= Drawing inspiration from more traditional spaces:

= Luminance — Vergence
= Contrast — Disparity

“A perceptual model for disparity” by Didyk et al. 2011
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“A perceptual model for disparity” by Didyk et al. 2011
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Standard stereo Backward-compatible stereo

“A perceptual model for disparity” by Didyk et al. 2011
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“Perceptually-optimized content remapping for automultiscopic displays” by Masia et al. 2012



OIS APILINNA4AN

Retargeted

Light Field Image Depth Image Luminance

“Perceptually-optimized content remapping for automultiscopic displays” by Masia et al. 2012
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http://www.opticalillusion.net/optical-illusions/grey-glow-illusion-the-glare-effect/



SIGGRAPH2012 y;‘

=)

o

log,, Luminance
3

(e}
169, Luminance
3

I

100 20C m
Scaire of pasis

)

100
e of plesls

1 200
Sa-iwmu of poe's.

00 200
Scartne of ponis

http://www.opticalillusion.net/optical-illusions/grey-glow-illusion-the-glare-effect/

“Brightness of the glare illusion” by Yoshida et al. 2008
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keep staring at the black dot.

“Perception-based rendering: eyes wide bleached” by Anson et al. 2005
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“Perception-based rendering: eyes wide bleached” by Anson et al. 2005
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“Perception-based rendering: eyes wide bleached” by Anson et al. 2005
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“A computational model of afterimages” by Ritschel and Eisemann 2012
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“Unsharp masking, countershading and halos: enhancements or artifacts?” by Trentacoste et al. 2012
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“Unsharp masking, countershading and halos: enhancements or artifacts?” by Trentacoste et al. 2012
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Our method

“Unsharp masking, countershading and halos: enhancements or artifacts?” by Trentacoste et al. 2012
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“Apparent display resolution enhancement for moving images” by Didyk et al. 2010
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Figure 2: Fixational eye tracking over an region of interest in com-
bination with a low-resolution image sequence leads to an apparent
high-resolution image via integration in the retina.

“Apparent display resolution enhancement for moving images” by Didyk et al. 2010
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“Perceptually-motivated real-time temporal upsampling of 3D content for high-refresh-rate displays” by Didyk et al. 2010
“Perceptual considerations for motion blur rendering” by Navarro et al. 2011
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= To know more:
= Multidimensional image retargeting. SIGGRAPH Asia 2011 Course




	main.pdf
	2_ComputationalDisplays
	3_ComputationalLightFieldDisplays_
	DIEGO_4_PerceptuallyDrivenComputationalDisplays

